
1

Local and Remote Memory:
Memory in a NUMA System

by

Christoph Lameter
christoph@lameter.com

Revision: April 25th, 2006
© 2006 Silicon Graphics, Inc. All rights reserved.

A draft of a corresponding paper may be found at
<http://ftp.kernel.org/pub/linux/kernel/people/christoph/pmig/numamemory.pdf>

Memory seems to be so simple. If you need it then just get some and use it. That
works just fine on most Linux architectures. On a NUMA system the distance of
the memory to the executing process matters. Performance can sink dramatically
if memory references too frequently are to memory on remote nodes. Local
memory is special to the execution context because it has minimal latency and
optimal bandwidth characteristics. Under NUMA the operating system must
figure out how to assign memory to a process in an optimal way so that the
process can utilitze all memory resources and run with the highest performance.

mailto:christoph@lameter.com

2

Introduction

● A toy Linux/NUMA System
● Linux Memory Management
● Linux NUMA Memory Management
● Efficient placement of memory
● Memory Reclamation
● Memory Migration
● Memory Policy
● Cpusets
● Potential future NUMA work

3

A sample NUMA System

● UP, SMP, NUMA
● Nodes
● Interconnect
● Numa distance

– Off node
● SLIT tables

– Local Distance
– Remote Distance

● Node Local
● Device Local
● Placement: Where to

allocate from

CPU 1 Remote Memory

CPU 2 Cachelines

N
U

M
A

 In
te

rc
on

ne
ct

Node 1

CPU 3 Local Memory

CPU 4 Cachelines

Node 2

CPU 5 Remote Memory

CPU 6 Cachelines

Node 3

CPU 7 Remote Memory

CPU 8 Cachelines

Node
4

Storage
Subsystem

Network
Interface

4

Linux Memory Management

● Memory in Pages
● Page allocator
● Anonymous vs. File

backed memory
● Slab allocator
● Device allocator
● Page Cache
● read() / write() vs.

mmapped I/O.

Process
Memory

Page
Allocator

PCI
Subsystem

Slab
allocator

Vmalloc

Anonymous
PagesPage Cache

Buffers

Device Drivers
Kernel Core

5

UMA Linux Memory Allocators

● Page allocator:
alloc_pages(flags, order)

● Slab allocator:
kmalloc(size, flags)
kmem_cache_alloc(cache, flags)

● Virtual kernel memory:
vmalloc(size)

● Device memory:
dma_alloc_coherent(device, size, &addr, flags)

6

UMA Memory Reclaim
● Anonymous memory freed

when process terminates
● Mapped file backed pages

become unmapped but are
not freed. So unmapped file
pages accumulate.

● If memory runs low the
swapper begins reclaim of
memory.

● Light reclaim just frees
unmapped file pages.

● If memory stays tight then
memory may be unmapped
which will allow the freeing of
mapped file backed pages
and the swapping out of
anonymous pages.

Anonymous Memory

Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory

7

NUMA Memory Management

Node 1
Memory

Node 2
Memory

Node 3
Memory

● Memory management per node
● Memory state and possibilities of

allocation
● Traversal of the zonelist (or nodelist)
● Process location vs. memory allocation
● Scheduler interactions
● Predicting memory use?
● Memory load balancing
● Support to shift the memory load

8

New NUMA Memory Allocators

● New semantics for UMA allocators and addition-
al functions.

● Page Allocator:
alloc_pages_node(node, flags, order)

● Slab Allocator:
kmalloc_node(size, flags, node)
kmem_cache_alloc(size, flags, node)

● Virtual Kernel Memory:
vmalloc_node(size, node)

● dma_alloc_coherent(device, size, &addr, flags)

9

Efficient Allocation

● Minimal Latency = Node Local
● Only possible if enough memory and

processors on one node (SMP like).
● Efficient allocation are mostly possible for

small Unix like processes
● For device drivers stay on the device node
● Resource limitations on NUMA interlink
● Node saturation with remote requests.
● Scheduler interference
● Need to have the ability to direct allocations

10

Complications when placing
Memory

● Problems develop when applications require
the resources of multiple nodes

● Memory Categorization for allocation
– Thread specific -> Node local
– Shared read/write -> Spreading
– Shared read/only -> Replication

● Need to balance memory between partici-
pating nodes.

● Page cache overflowing single nodes
● Swapper not active for overflowing nodes.

11

Memory Balancing
● Strategies on how to place data
● First place most critical structures then move

on to secondary data.
● Limited availability of memory may lead to

more compromises for less important data.
● Balancing the number of NUMA interlink

requests per node.
● Consider device locality to I/O bound

processes.

12

NUMA standard reclaim
● Reclaim is a global reclaim.
● Reclaim only active if total free memory becomes low
● No local reclaim results in lots of node allocations
● Off node allocations occur until all the nodes are out of memory. On a

large NUMA system this can seem to never occur.
● The distances to the remote nodes become excessive.
● One technique used in the past is to manually drop the pagecache.

Anonymous Memory
Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory

Anonymous Memory

Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory

Anonymous Memory

Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory

13

Memory Reclamation
(zone reclaim)

● Swapper (global
reclamation) not
regularly running
under NUMA

● Need for local
reclamation. This
has been
implemented as
zone_reclaim.

● Local reclaim from
inactive page cache
before going off line.

● Off node timeout
(default 30 seconds)

● Advanced modes:
Write and swap
during zone reclaim.

● Included in 2.6.16.

14

Zone reclaim details

● /proc/sys/vm/zone_reclaim_mode
– If != 0 then local memory reclaim is on.
– Switched on based on largest NUMA distance

encountered during boot. If the NUMA distance
is more than 15 then its on.

● /proc/sys/vm/zone_reclaim_interval
– Time to allow off node accesses if local reclaim

failed to free local memory.
– Heuristic necessary since we have no easy way

to figure out how many pages are reclaimable.
Once we have better NUMA VM statistics this
could go.

15

Memory Migration

● Arose from the need to rebalance the load of
running applications.

● Interface designed for system administrators
and batch scheduler.

● 3 APIs: Policy based, commandline driven
and cpuset controlled.

● Page is migrated by removing references.
● 2.6.16 has basic migration that still requires

swap to be defined. Later version will be
independent of swap and preserve more
references.

16

Memory Migration Methods

● cat /proc/pid/numa_maps
– Shows current usage of pages on various nodes

● migratepages pid from-nodes to-nodes
– Commandline tool to move pages of a process

between nodes while preserving relative
locations of pages within each node set.

● sys_migrate_pages
– A new system call

● MPOL_MF_MOVE(_ALL) flag for
sys_mbind().

● /dev/cpuset/cpuset/memory_migrate flag

17

Memory Policies

● Ability to direct
allocations.

● Dynamically set
allocation policies
for a task.

● Set allocation
policies for address
ranges.

● Issues of file backed
pages.

0 31 2 4

● MPOL_DEFAULT
● MPOL_PREFER
● MPOL_BIND
● MPOL_INTERLEAVE

18

Cpusets

● Convenient means of boxing in allocation and
Processor use for large applications.

● Ability to control swap and various other things
in a cpusets.

● Automigrate processes when nodes of a
cpuset are changed or when moving a task
between cpusets.

● Cpuset wide interleaving policy (memory
spreading) for slab and page allocation for
pathological cases of apps not prepared for
NUMA.

19

Future Plans
● Preserve mappings during

migration.
● More File system support

for migration.
● Unify allocation constraints

and policies
● Kernel text replication
● Replication of shared read

only pages.

● Unify allocation constraints
and policies to provide
something that can provide
the functionality of both
cpusets and memory
policies.

● Better Memory Balancing
through per node statistics

● Remove configurations for
memory reclaim

● Remove zone reclaim?

20

Conclusion

● Gradual Maturation of Linux / NUMA support
● NUMA is going mainstream with multi core

configurations for x64, PowerPC and Sparc.
● Seems that x86 will be a major NUMA platform.

