
Shoot first and stop the OS noise
Dealing with microsecond latency requirements

Christopher Lameter
Linux Foundation

cl@linux-foundation.org

Abstract

Latency requirements for Linux software can be ex-
treme. One example is the financial industry: Who-
ever can create an order first in response to a change
in market conditions has an advantage. In the high
performance computing area a huge number of calcu-
lations must occur consistently with low latencies on
large number of processors in order to make it possi-
ble for rendezvous to occur with sufficient frequency.
Games are another case where low latency is important.
In games it is a matter of survival. Whoever shoots first
will win.

An operating system causes some interference with user
space processing through scheduling, interrupts, timers,
and other events. The application code sees execution
being delayed for no discernible reason and a variance
in execution time due to cache pollution by the operat-
ing system. Low latency applications are impacted in a
significant way by OS noise.

We will investigate issues in software and hardware for
low latency applications and show how the OS noise has
been increasing in recent kernel versions.

1 Introduction

Operating system noise is something of a mystery to
most user space programmers. The expectation by those
writing the application is that the operating system is
simply letting the application run. Users see the main
function of the Operating System to provide resources
for the program to run effectively. In the case of OS
noise the Operating System itself becomes a problem
because the OS is interfering with the application by
making uses of the processor for maintenance tasks or
operating system threads that also have to run on the

processor. Running OS code may impact the applica-
tion which will not perform as expected. The execution
times of critical code segments in the application may
vary a lot without any discernible reason. One hears
complaints from users that the OS should just get out
of the way. The problem becomes more severe as the
number processors increases and as interconnects be-
come faster.1 The timing requirements for critical sec-
tions move from milliseconds to microseconds. Modern
processors can perform a significant amount of work in
a microsecond provided that there are no latencies asso-
ciated with the data needed for processing. Therefore,
processor caches have a significant effect on the laten-
cies of critical code segments. The OS code causes dis-
turbances in the processor caches that has an effect long
after the application continues execution.

The problem was first noticed first in High Performance
Computing.2 HPC applications typically go through a
highly parallel calculation phase and then a rendezvous
phase in which the results of the calculations are ex-
changed. It was noted that the calculation phase was
rarely performing within the boundaries expected. The
problem became worse as the number of processor in-
creased. The investigation found that the rendezvous
phase will be delayed if any one of the processes is held
up due to OS interference (like for example a timer in-
terrupt). The more processors exist the more likely the
chance that OS interference will cause a delay. This is
especially severe on Linux due to the staggering of the
timer interrupts over all processors in the system. As
a result the timer interrupts will not run all at the same
time (which would potentially overload the interconnect
between the processors). The more processors a sys-
tem has the shorter the period that no timer interrupt is
running on any processor and the more likely that the

1Infiniband hardware can f.e. perform transfers between machine
in 1-3 microseconds!

2See especially Petrini, 2003

1



rendezvous phases are delayed due to a single proces-
sor being hit with OS interference. This can lead to se-
vere performance regressions so that some vendors have
started to modify the scheduler to have special synchro-
nized periods dedicated to OS processing in order to be
able to execute concurrently on all processors without
OS interference during other times.3

In the financial industry we see a arms race to lower
latencies.4

Latencies for the exchange of financial data and for trad-
ing used to be measured in milliseconds but that has now
come to focus on microseconds. Whoever can react in
the fastest way to changing market conditions may take
advantage of a favorable trade opportunity. The latency
requirements in the financial sector focus more on net-
working and on the need of fast processing of huge and
complex sets of data. The classic decision support sys-
tem (DSS) paradigm is taken to extremes there. Stop-
ping the noise results in concrete market advantages.

A similar move is seen in the gaming industry. There
also a growing focus on smaller and smaller intervals
for critical processing develops. If interactive computer
games are played over the Internet then the focus is
mostly on millisecond latencies since the WAN links
do not allow smaller latencies. This limits the rich-
ness of interactivity of computer games. Recently there
has been an increased move towards putting interactive
games on LANs where players are in local proximity
(LAN parties). Gaming software can exchange large
sets of information in sub millisecond time frames in
such configurations. There it is likely that we will also
facing issues with microsecond latency demands in the
future and therefore OS noise is also becoming factor.
OS noise there can determine whoever will be able to
shoot first. One side effect of latency in shooter games
is that the bullet of the slower machine seems to hit the
target (since the slower machine was not able to acquire
the updated position of the enemy) but the enemy takes
no damage since the person has already moved on in the
game servers reckoning and the game server determined
that the shot missed the target. The enemy is hit, it dies
a horrible death on the screen of the shooter and then
suddenly continues running down the corridor.5

3See Beckman 2008, 5. Tsafir 2008, section 4. Petrini 2003, 10
4F.e. 29West–a major player for middleware in the financial

area–recently announced a vision for zero latency.
5See http://en.wikipedia.org/wiki/Multiplayer

2 What is Operating System Noise

What exactly is Operating System noise? The common
definition in use is any disturbance caused by the OS
making use of a processor. I would like to extend that
definition to cover everything not under the control of
the application that has a negative impact on perfor-
mance and latencies observed by code running in user
mode. This goes beyond the strict notion of OS noise
and more towards a notion of general noise (maybe bet-
ter called system noise) that impact on an applications
performance. Noise is not only the result of interrup-
tion of code execution (be it the periodic timer interrupt,
device interrupts, software interrupts, faults and so on)
but also memory subsystem disturbances due to the Op-
erating Systems putting pressure on the cache subsys-
tems of the processor which causes application cache
line refetches.6

The use of on chip resources of a CPU by an OS or an-
other application are important. Resources commonly
available are the processor caches, the TLB entries, page
tables and various register copies. Contention on all
these levels can reduce the performance of the appli-
cation. If the OS scans through a large list of objects
in a regular way7 then a large number of TLB entries
may be evicted that have to be re fetched from mem-
ory later. If memory becomes scarce and the OS evicts
pages from memory then the eviction may have a signif-
icant latency effect since the evicted pages will have to
be re-read from secondary storage (such as a hard disk)
when it is needed again.

Processors are also not isolated from each others. The
notion of “CPU” that the Linux OS has is basically a
hardware managed execution context. These can share
caches with other “CPUs” on various levels. If cache
sharing occurs between multiple of the CPUs then a
process on another processor can cause cache lines of
the application to be evicted, can use TLB lines and
other processor resources that cause latencies for the ap-
plication. The most significant effects occurs if multi-
ple execution context share all resources of the proces-
sor like for example in hyper-threading. Operating sys-
tem schedulers (like the Linux scheduler) currently only
have simple handling of these dependencies and rely

6According to Beckman cache line eviction is the major effect
increasing the latency of critical sections. But that may depend on
the type of load running.

7Like for example done by the SLAB allocator in Linux

2



mainly on heuristics. This leads to a situation in which
increasing load customarily leads to a general slowdown
of all processes running on the machine once all cpus are
actively processing data.

3 Latency Overview

In order to talk in a meaningful way about latencies it is
important to know what these time frames represent in
reality. One thing that is often forgotten is that telecom-
munication or general signal latencies are limited by the
speed of light (300.000km/sec). The relativistic limits
become significant when signals have to run over long
distances. Whenever signals must travel across a WAN
link latencies in the range of milliseconds become un-
avoidable. Signals travel over fiber optic or copper links
at the speed of around 200.000km/sec. Since the earth
has a circumference of 40.000km: A signal that is sup-
posed to reach any point on the earth (the earth is round
so we can reach any point within 20.000km) must ac-
count for a minimal latency of 1/10th of a second.

Here is a list of latencies and how they apply to network-
ing and OS events. Each latency includes the notion of
a distance that a signal can have traveled in that latency
period:

3.1 1 second

• Time needed for light to reach the moon.

3.2 100 milliseconds

• A signal can reach all of the earths surface.

• Minimum human reaction speed.

• Timer interrupt interval for Linux systems config-
ured with 100 HZ.

• Half of the TCP retry interval and SYNACK inter-
val

• Typical Internet latency for high speed consumer
grade links

3.3 10 milliseconds

• 2000km distance. Reach surrounding metropolitan
areas.

• Timer interrupt interval for systems configured
with 1000 HZ.

• Major fault (page needs to be read in from disk).

• Rescheduling to a different process on the same
CPU.

3.4 1 millisecond

• 200km distance. Reaches systems in your city.

• Sound travels 34 centimeters. A signal from a
speaker reaches your ear.

• Average seek time of a hard disk.

• Camera shutter speed.

3.5 100 microseconds

• 20km. Signal confined to local LAN or building.

• Maximum tolerable interrupt hold off.

• Best Ethernet ping pong times on 1G between
neighboring systems.

3.6 10 microseconds

• 2km. Signal confined to local LAN.

• Minor page fault (Copy on write after fork).

• Duration of time interrupt.

• Duration of typical hardware interrupt.

• Typical IRQ hold off period if kernel disables in-
terrupts.

• Duration of a system call.

• Context switch.

• Relativistic time distortion in GPS systems that
needs to be compensated for.

3



3.7 1 microsecond

• 200m. Local LAN.

• Resolution of gettimeofday() system call.

• Duration of a vsyscall

• PTE miss and reloading of TLB

• Start of hardware interrupt processing

3.8 100 nanoseconds

• 20m. Within your room.

• Cache miss. Time needed to fetch data from mem-
ory.

• TLB miss.

Signalling latencies are currently a major restriction for
building large supercomputers. The latency of memory
subsystems can only be reduced if the subsystems are
packed in a dense way. If the memory is over 20m away
from the processor (even less in reality) then the time it
takes the signal to travel across the wire will take up a
major portion of the latency. It really does not matter
how fast the memory is if its physically too far away.

Similarly one has to be careful of offers of “faster” DSL
lines or network connections. “Faster” not mean that the
speed of the data going across the wire is increased. It
means that the number of bytes that can be transmitted
at one time is increased. “Faster” DSL means a higher
capacity link not that there will be any real increase in
transmission speed. For gamers the distance to the game
server is really important. If you live far away from the
population centers then one is usually at a severe disad-
vantage due to signal run latencies. Others will shoot
first and you will shoot and hit them but they wont get
killed. The only solution for gamers to be able to shoot
first is to figure out where the game serves are located
and move nearer to them.

I keep getting questions about how to make things faster
in terms of latency but the laws of physics are squarely
in the way here. There is no solution in sight. Maybe
someone can rework physics to show us how its done?
Then maybe we can quantum tunnel signals, use warp
drive bend time and space to fix this issue. If we can do
that then we can likely also do all the other nice stuff
that shows up in space fiction movies.

4 Characteristics of Noise

There are a couple of way to characterize noise. Noise
can be seen as an interruption of the execution of the
application. Noise in this form is a simple DoC (Denial
of CPU) by the OS and can be measured by repeatedly
taking time stamps. If the difference is higher than usual
then some outside influence interrupted the process and
stole processing time. It is typical to set some limitation
of a boundary over which a delay is long enough to be
considered a notable noise event. The important charac-
teristics of noise that emerge from this method are the
noise duration and their frequency.

Noise also has an influence on the execution speed of
code through additional cache misses, TLB misses and
internal processing within the processor. It is far more
difficult to measure these effects. If the execution speed
of a given segment of code is known then the devia-
tion can be determined by also measuring the execution
speed of a segment. However, that is only possible for
code segments that can be executed repeatedly with the
same data. The noise can then be quantified in the per-
centage of slowdown in the code segment due to noise
interference.8

Noise interacts with the application in various ways.
There are applications that are sensitive to certain types
or noise and can tolerate others. Typically one assumes
a linear correlation of the noise due to application per-
formance. However the noise can resonate with process-
ing intervals of the application which can then lead to a
butterfly effect that amplifies the delays in the applica-
tions. The intervals of communication of the application
are of importance. If the application does not frequently
exchange information with other processes then the im-
pact of fine grained noise (as usually presented by an
OS) is minimal. However, if information exchanges oc-
cur frequently then the final grained noise can affect the
critical communication paths and significant effects can
develop.9

Some researchers have found that noise below the 1 mi-
crosecond boundary usually does not cause significant
harm.10 In the following surveys we will adopt 1 mi-
crosecond as a boundary for an OS event that is consid-
ered significant for our investigations.

8The measuring points will add additional latencies and cause
more disturbance of processor resources in addition to the OS noise

9Petrini, 2003
10Tsafir 2008, under section 3.2 Granularity

4



4.1 Sources of noise

• The Linux scheduler is a prime cause for OS noise.
Even if a process runs on an otherwise idle sys-
tem: The scheduler will reschedule another pro-
cess on any processor at least once a second (invol-
untary context switches). These context switches
can be avoided by setting a real time priority
(SCHED_RR or SCHED_FIFO). But real time pri-
orities still do not stop the OS from processing
maintenance code on the same processor. Espe-
cially the scheduler softirq will still be executed
from the timer interrupt to keep statistics and check
if other processes should be run on the processors.
The scheduler is currently not designed to leave a
running process alone.

• The Linux timer interrupt occurs with HZ fre-
quency every second. Typically kernels are run
with 1000 HZ meaning that a noise event occurs
every millisecond. The timer interrupt in turn may
run various regular maintenance tasks that increase
the length of the events impacting the application.

The kernel has an option to enable a tickless system
(CONFIG_NO_HZ) but the tick is only switched
off if a processor is idle. A busy processor will in-
variably get hit by the timer tick. The description of
CONFIG_NO_HZ as enabling a “tickless system”
is a bit misleading.

There are other options for how to schedule OS
maintenance events. Solaris only has a timer in-
terrupt on processor 0. All other processors are
left alone. The scheduler executing on processor
0 schedules the processes running on the other pro-
cessors. On Solaris it is important to run processes
on other processors in order to reduce OS noise.11

• Cache disturbances

If multiple cpus (hardware execution context) share
the same caches then another executing process on
other cpus has access to processor resources nec-
essary for execution. This is particularly signifi-
cant if the processor supports hyper threading. All
caches are shared then. L2 and L3 caches are also
frequently shared between multiple processors.

• TLB miss

TLB misses occur when the cache of virtual to
physical mappings of the processors get exhausted.

11Radojkovic 2007, 5

This is common if a threads memory accesses are
sparse or are randomly covering large memory ar-
eas. Pointer chasing is a typical application that
creates TLB misses. If the working set of a process
becomes larger than the TLB coverage then it is
possible that every memory access requires a new
TLB fetch. If the TLB use of an application is high
then OS processing may cause key TLB entries to
be evicted.

TLB resources are typically shared between multi-
ple cpus meaning that the full TLB coverage is not
available for single processor.

• Major page fault

Major page faults involve bringing in a page from
secondary storage (usually a hard disk). These are
also a major causes of latency. Major faults are
avoided by read ahead functionality of the file sys-
tem. If the system detects linear reads from a disk
device then multiple of pages are read in anticipat-
ing future faults. If read ahead has been performed
for a page then only a minor fault will be generated.

Major faults can accumulate if the OS starts to evict
pages from memory that have been rarely used. If
the pages that are missing from the process are rela-
tively sparsely spread over large areas of secondary
storage then the read ahead logic will be ineffec-
tive and each page fault may cause long latencies.
From the application perspective these are not dis-
cernible from OS noise. The application accesses
a memory location which results in an unexpected
major delay.

• Minor page fault

A minor fault is making a page visible to a process
that has never accessed it before. If another pro-
cess or read ahead has already brought a page into
memory then a minor fault involves settings up the
page tables so that the page becomes visible in the
address space of a process.

A minor fault can also occur when writing to the
memory of a page. In that case we may have to
copy the page (Copy-On-Write = COW) or update
page dirty statistics.

• System threads

The Linux kernel itself creates threads that are used
for scheduling background write out, event han-
dling and so on. File systems and other kernel

5



subsystems create their own background processes.
These are usually fixed to a specific processor. The
way to keep these quiet is not do perform actions
that require background activities on a processor.
The activities of these threads will shut down after
some idle time of the subsystems.

It is fairly typical for these threads to only cause
minor delays. However, the scheduler has to per-
form a context switch to the threads and back. The
overhead increases significantly if large lists have
to be processed (LRU expiration of inodes, slab ob-
ject expiration).

• User space background daemons

The user space background daemons are mostly
created during boot up and have various adminis-
trative functions. It is possible to bind these pro-
cesses to specific processors through the taskset
tool. These background daemons can cause partic-
ularly long hold offs. Notorious examples are log-
ging daemons that can issue fsync() system calls to
force the log messages onto disk which may cause
long delays due to synchronous write outs to disk.

5 Utilities to measure noise

I found no tools to measure noise under Linux
so I created a series of test programs available at
http://gentwo.org/ll. A small introduction to some of
their features.

5.1 Low latency library

The low latency library (ll) contains basic function to
obtain time stamps in a variety of magnitudes in an in-
expensive way via the time stamp counts. Logic is in-
cluded to determine the processors characteristics and
the cache layouts from user space. These are basic ne-
cessities for measuring intervals in an accurate way with
the least impact on a user space program and for tuning
a user space application to the cache size or number of
cores available.

5.2 latencytest

latencytest is a tool that continually retrieves the value
of the time stamp counter and compares with the last

time stamp obtained before. If a certain threshold (de-
fault 1 microsecond) is reached then the event is regis-
tered as a noise event. Latencytest produces a histogram
and prints out statistics regarding the intervals observed.
Latencytest monitors various scheduler statistics about
itself and will note if the scheduler moves the process
to another processor or performs a context switch away
from the process.

Latencytest is a test load that can be run while other sys-
tem activity is going on or with special scheduler param-
eters to see how the scheduler would change the treat-
ment of a process.

The code used to determine how scheduling can affect
the test load can be used as sample code to instrument
a user space program. Typically these would be used to
determine characteristics of key critical code segments.

5.3 latencystat

latencystat is able to display latency statistics of any
process in the system via the /proc/<pid>/schedstat in-
formation. It is comparable to vmstat and displays con-
tinually how long a process ran without another process
having been scheduled and determines the average wait
time from the point that a process became runnable until
the scheduler gave the processor to the process.

5.4 trashcache

trashcache is a program that runs forever and does ran-
dom memory accesses in order to trash the processor
caches. Running trashcache on a sibling CPU can be
used to gauge the impact of CPU cache thrashing on a
user space process.

5.5 OS diagnostics

The operating system itself has counters for scheduler
events that one can query f.e. via the getrusage() system
call. Example code can be found in the source code for
the latencytest tool.

5.6 udpping

udpping is another tool to measure OS noise by sending
network packets back and forth between two systems.
The UDP ping pong is the fastest time to communicate
between two hosts using the IP stack. Noise shows up
as variances of transfer times between both system.

6



6 Some OS noise measurements under Linux

The tools above can be used to measure the OS noise
characteristics under Linux. Here we measured a com-
pletely idle system and see what the effect of the OS has
on a simple test load (latencytest tool). It is important to
note that this is the best scenario that can ever happen for
the given kernel version. There will be numerous addi-
tional disturbances through cross-cache effects, system
and user space daemons and so on if the system would
be running a realistic load. What we measure here is a
best case scenario. Everything else is guaranteed to be
worse than what we measure.12

First a test running latencytest for various kernel ver-
sions. The tests are run for 10 seconds each and we
record events longer than 1 microsecond. Most of the
events recorded are timer interrupts of a duration longer
than 1 microsecond. Timer interrupts may occur that are
less of one microsecond in duration but these low laten-
cies are only reached during favorable conditions when
not much work is to be done from the timer interrupt
and if the queue of functions to call is small. The test
load does not have a large cache footprint (fits nicely
into the L1 cache) meaning that most of the cache lines
used for the timer interrupt will remain in memory. The
processor in use here is a Penryn, dual quad core (Xeon
X5460) at 3.16Ghz.

Version Test 1 Test 2 Test 3 Sum
2.6.22 383 540 667 1590
2.6.23 2738 2019 2303 7060
2.6.24 2503 573 583 3659
2.6.25 302 359 241 902
2.6.26 2503 2501 2503 7507
2.6.27 2502 2503 2478 7483
2.6.28 2502 2504 2502 7508
2.6.29 2502 2490 2503 7495
2.6.30 2504 2503 2502 7509

Table 1: Latency events >1 microseconds for a number
of kernel versions

The number of noise events was initially quite low. With
2.6.23 (which introduced a new scheduler) we see a sig-
nificantly higher number of noise events. Things im-
proved with 2.6.24. In 2.6.25 we had a significant reduc-
tion of the OS noise to the smallest value seen. However,
that was lost in 2.6.26.

12For a worse case run a latencytest during a kernel compile

The tests were run on a “tickless” system (CON-
FIG_NO_HZ is set) because the description for a “tick-
less” system given was that the timer interrupt only oc-
curs as necessary. However, as seen here: The timer
interrupt seems to occur regularly.

Each test run 10 seconds and in those 10 seconds 2500
time 1 HZ intervals occur since the kernel was config-
ured with 250 HZ. Therefore what we see here are must
be timer interrupts causing noise. The timer interrupt
in 2.6.22 and 2.6.25 ran less than 1 microseconds other-
wise the latencytest tool would have registered them.

The next test shows the average length of the noise
events registered.

Version Test 1 Test 2 Test 3 Average
2.6.22 2.55 2.61 1.92 2.36
2.6.23 1.33 1.38 1.34 1.35
2.6.24 1.97 1.86 1.87 1.90
2.6.25 2.09 2.29 2.09 2.16
2.6.26 1.49 1.22 1.22 1.31
2.6.27 1.67 1.28 1.18 1.38
2.6.28 1.27 1.21 1.14 1.21
2.6.29 1.44 1.33 1.54 1.44
2.6.30 2.06 1.49 1.24 1.60

Table 2: Duration of Latency events >1 microseconds
for a number of kernel versions

The tests shows that the time spend in the timer in-
terrupts gradually increases. Interestingly 2.6.22 and
2.6.25 have much longer noise durations. The long du-
rations may be a consequence of the OS batching mul-
tiple events in fewer timer events. The remaining timer
events have less processing to do and therefore their pro-
cessing time may under the 1 microsecond boundary. A
significant portion of timer events in 2.6.22 and 2.6.25
took less than 1 microsecond.

We see the effect of kernel bloat in 2.6.28, 2.6.29 and
2.6.30. The average time spend in the timer interrupt
gradually increases. This causes more and more regres-
sions for latency sensitive applications. The question
is what is worse: Batching events to have fewer noise
above 1 microsecond of longer duration or having more
events with a smaller duration.

The above results suggests a simple way to reduce the
frequency of OS noise in the Linux kernel: Reduce
the frequency of the timer interrupts. In the follow-
ing measurements we let latencytest run for 60 seconds

7



and measure the number of noise events: Once with
SCHED_OTHER which allows the scheduler to sched-
ule other processes on the processor (although there is
nothing else running on the system). And the second
time with a real time priority SCHED_FIFO which does
not allow the scheduler to take away the processor and
give it to another process (but the kernel can still execute
any of its threads and thereby create OS noise).

HZ Events Duration CSw RT RT
events dur.

18 1088 2.76 76 893 2.41
60 6042 2.62 95 6013 2.43

100 6012 2.47 103 6011 2.60
250 15024 2.52 94 15012 2.56
300 18022 2.16 65 18021 2.31

1000 60047 2.10 63 60043 2.20
4000 240139 2.00 61 240145 2.12

Table 3: Kernel Latency events depending on the timer
interrupt frequency

The kernel supports timer interrupt frequencies (HZ)
from 16 HZ to 4000 HZ. The arch specific configura-
tion on x86 only allowed for 100-1000 HZ. A patch was
used to extend the range of timer interrupt rates.

The effect of RT priorities is a bit disappointing. RT
priorities do not significantly reduce the OS noise. RT
scheduling prohibits context switches but these have a
minor impact here. Pretty worrying is that in ranges
higher than 250 HZ the overhead for RT scheduling in-
creases and the timer interrupts become longer for RT
scheduling despite the additional context switches that
occur for SCHED_OTHER.

The duration of the timer events slightly decreases as
the number of timer interrupts per second is increased.
However, the change in duration does not seem to be that
significant. This suggests that it may be best to reduce
HZ as much as possible especially since high resolution
timers are used in various places in the kernel now were
accurate reaction to timeouts is important.

Since we saw that CONFIG_NO_HZ does not eliminate
the HZ frequency interrupts while a process is executing
it is interesting to see how a kernel would behave with-
out CONFIG_NO_HZ. Surprisingly OS noise is signifi-
cantly reduced by switching CONFIG_NO_HZ off. The
number of involuntary context switches is reduced. Av-
erage durations are significantly reduced. The number
of events over 1 microseconds drops by half for 1000

HZ Events Duration CSw
18 1084 7.37 62
60 6016 2.02 63
100 6037 1.46 98
250 15016 1.87 61
300 18018 1.40 62

1000 34597 1.30 79
4000 151744 1.25 92

Table 4: Kernel Latency events for a system with ticks
during 60 seconds

HZ and 4000 HZ. Switching off idle processor seems
to be a very scheduler intensive activity. It is good for
power consumption but it does not reduce the system
noise as one would have expected.

7 Conclusion

The noise is there in the Linux kernel and it is gradually
increasing as the kernel gets bloated with new features.
I think it is necessary to keep an eye on the latencies
created by the OS since we are seeing regressions when
using newer kernels for latency sensitive applications.

In order to reduce the noise created in the Linux kernel
we need to go beyond the real time scheduling policies
(SCHED_RR and SCHED_FIFO). The following mea-
sures may be useful:

• Not running a timer interrupt if not necessary.
Could we have a true tickless system? Currently
Linux claims to be tickless but the truth is that a
tick still is used when a process is running. A tick
makes sense if multiple processes are contending
for time on the same processor. If there is no other
process at the same or higher priority contending
then there is no need for a timer interrupt until the
processor voluntarily gives up the time slice or un-
til another process is created that can contend for
the processor. We already have high res timers. Is
it not possible to calculate how long a process is
allowed to run and have the scheduler processing
only occur when we reach that point?

If multiple processors are contending for a proces-
sor and we assign a time slice to a processor then
there still is no reason to run an timer interrupt be-
fore the end of that time slice. The OS needs to
have a concept of an on demand timer interrupt that
is only enabled on request.

8



• The scheduler needs to be more aware of the cache
relationships between multiple “CPU”s that the OS
knows about. The chance is good that threads of
the same process will share data and therefore it is
essential that the scheduler put threads of the same
process on cpus that share CPU caches. If a process
is running on one CPU and is marked as latency
sensitive (using SCHED_RR and SCHED_FIFO)
then scheduling on a sibling needs to be avoided
as much as possible to leave the CPU cache undis-
turbed.

• It may be useful to make processor 0 a special pro-
cessor that is used for system tasks. It could have
a special role that the scheduler is aware of (com-
parable to Solaris). Processor 0 is already special
because it is running a timer interrupt that is tasked
with keeping system time. Therefore the noise cre-
ated by processor 0 is already increased. Non la-
tency sensitive tasks could be scheduled on proces-
sor 0 to keep needless noise away from the other
cores. High priority tasks can then be scheduled on
the other processors as needed whereas lower pri-
ority user space tasks (such as the regular daemons)
could be mostly scheduled on processor 0.

• Processor 0 could take over tasks from other pro-
cessors (like scheduling for idle processors). If a
processor is busy and no CPU specific events are
scheduled on a processor then processor 0 could
take over managing the run queue and interrupting
the target CPU as the need arises.

8 References

Beckman, P., Iskra, K., Yoshii, K., and Coghlan, S.
2006. “Operating system issues for petascale systems.”
SIGOPS Oper. Syst. Rev. 40, 2 (Apr. 2006), 29–33.

Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., and
Nataraj, A. 2008. “Benchmarking the effects of
operating system interference on extreme-scale parallel
machines.” Cluster Computing 11, 1 (Mar. 2008), 3–16.

Ferreira, K.B., Bridges, P., and Brightwell, R. 2008.
“Characterizing application sensitivity to OS
interference using kernel-level noise injection.” In
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (Austin, Texas, November 15–21,
2008).

Van Hensbergen, E. 2006. “P.R.O.S.E.: partitioned
reliable operating system environment.” SIGOPS Oper.
Syst. Rev. 40, 2 (Apr. 2006), 12–15.

E. V. Hensbergen. “The effect of virtualization on OS
interference.” In Proceedings of the 1st Annual
Workshop on Operating System Interference in High
Performance Applications, August 2005.

Petrini, F., Kerbyson, D.J., and Pakin, S. 2003. “The
Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192
Processors of ASCI Q.” In Proceedings of the 2003
ACM/IEEE Conference on Supercomputing (November
15–21, 2003). Conference on High Performance
Networking and Computing. IEEE Computer Society,
Washington, DC, 55.

Radojkovic, P., Cakarevic, V., Verdu Pajuelo, A.,
Gioiosa, R., Cazorla, F.J., Nemirovsky, M., and Valero,
M. 2008. “Measuring Operating System Overhead on
CMT Processors.” In Proceedings of the 2008 20th
international Symposium on Computer Architecture
and High Performance Computing (October
29—November 01, 2008).

Tsafrir, D., Etsion, Y., Feitelson, D.G., and Kirkpatrick,
S. 2005. “System noise, OS clock ticks, and
fine-grained parallel applications.” In Proceedings of
the 19th Annual international Conference on
Supercomputing (Cambridge, Massachusetts, June
20–22, 2005).

9


