

HPC Challenge in Distributed and
Parallel File systems

● Collaboration
Summit 2011

● Christoph Lameter,
Linux Foundation

The Distributed Scaling Problem

● Data has to be
available
everywhere

● Large volume of
data has to be
accessed very fast

● Failure of any
component should
not lead to loss of
data

● Distributed files
problem

● Throughput problem
● Resiliency
● 24hr availability
● I want my data

always anywhere
with high speed and
no data loss.

A whining session

● Users feel these requirements are
reasonable and it should be simple to create
something that does this.

● Reality is that none of that works and striving
for these goals is a constant headache for IT
departments.

● Heard this from multiple places
● No real projects to address all

of these issues

RAID handling or redundancy

● Differs between systems
– RAID on volumes

– RAID over nodes

– RAID on a per file basis

● Hardware and Software Raid

Hotspot avoidance
● 1000s of machine accessing a single file.
● Some FS can do replication for this (Ceph

f.e.)
● In some environments this is handled at the

block layer (HPs 3PAR)
● Caching the object for that purpose
● But it could be a pretty large file that is read

by all.
● Hotspots across a WAN are a particular

issue.

Throughput

● So far been able to bring everything vendors
threw at us to its knees

● 10GB-100GB/sec mininum.
● Special high speed interconnect
● Difficulty to get hardware vendors to believe

us.
● FS problems
● Instability issues with OS, drivers and

hardware.

The ideal world

● File will automatically be migrated globally to
wherever a file is going to be used

● Multiple redundant file servers that can fail
without impacting reachable.

● Global Filesystem: One path reaches the file
that I want from everywhere I could be.

● Binaries and script can run everywhere
without change.

Islands of Solutions

● Local multi node file systems
– Lustre/Gluster

– Ceph

– GPFS/IRIX/CXFS

● Global Filesystems
– AFS/CodaFS

– ExtreemFS

– OpenEFS

– Dcache/GFS

GFS - GoogleFS

● Single master metadata server
● Chunk servers as storage nodes
● Append only write semantics
● Not POSIX compliant
● Customized to Googles need.
● Seems to be designed

with some WAN
access in mind

XtreemFS

● Distributed filesystem
● But Grid focus
● Client caches only metadata
● Early development
● Major features like read-write files with

POSIX compliance, snapshots etc may take
a long time.

dCache – Lab

● Written for huge data streams
● POSIX compliant
● Http://www.dcache.org/manuals/dcache-whitepaper-light.pdf
● Tertiary Storage support
● Replication via WAN

http://www.dcache.org/manuals/dcache-whitepaper-light.pdf

OpenEFS

● Focus on versioning
● Perl based scripts to maintain archives

across a WAN
● Common namespace
● Conflict with packaging system
● Solution for application build consistency.

Lustre

● Good for performance (fastest...)
● Less so for reliability
● No operation across a WAN
● Complicated kernel patching (out of tree)

especially if used with Infiniband support

Ceph

● Resiliency
● Manages redundancy and distribution over

multiple nodes itself.
● Migrates files to where they are used.
● Authors do not want to deal with WAN issues
● Depends on btrfs and btrs is not yet

production ready.
● Good product at some future date.

Gluster

● Ingenious solution that works based on filename
translators.

● No WAN support

● Very fast in recent versions

● Easiest to deploy since there is less
dependency on low level filesystems.

● Aims to be a small
layer at the top.

AFS

● Very established distributed filesystem
solution from the 80s.

● Easy replication of read-only data
● Only a single writeable copy.
● Trouble with updating files
● Suitable for large scale
● deployments
● Not a “parallel” filesystem.

CodaFS

● Solves the write issues of AFS.
● Disconnected operations
● File is moved to client that accesses it.
● Resiliency?
● Not a parallel filesystem

Proprietary Solutions

● Need to load large binary blobs into the kernel

● Licensing fees per node

● Trouble with building your own kernel

● In practice this leads to deployment only for special
systems.

● Reexport via NFS, CIFS is common

● None of them does really support distributing files
across WAN.

● Proprietary solutions are present because there is
no compelling open source solution.

GPFS (IBM)

● LAN only
● Useful for general use: Enterprise class

reliability but still good performance. POSIX
semantics.

● Versatile configuration
● Preconfigured systems and services (“Scale-

out File Services”)

IBRIX (HP)

● Filesystem
● Lately becomes bricked (appliance) in form of

the X9000

3PAR (HP)

● Superior hotspot avoidance
● Compressions (avoid duplication of blocks

that have the same content)
● Self maintaining
● Its more of a block device though.

CXFS (SGI)

● HPC orientation
● Focus on high performance over against

enterprise class reliability
●

Where to go from here

● All solutions are a bit complicated and are not
full solutions

● Complexity of such an endeavor
● Integration of host based FS, inter node FS

and WAN manager.
● Can we coordinate multiple projects to tackle

this?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

