
Assymmetric SMP for higher performance
Christoph Lameter, Scalability track 2012

1

Simple scenario for
ASMP

Three tasks that
are shared on 3
processors
increase cache
footprint,
locking
overhead etc etc

Performance
decreases

2

Cpu caches
L1 32K data/32k code  
(4 cycles = 1.3ns)

L2 256k code + data  
(12 cycles = 4 ns)

l3 8M(4M). 24 cycles = 8ns

Local memory = 60ns.

Remote memory = 100ns.

3

ASMP advantages

Single threaded execution possible. Back to the days
of the single processor for limited pieces of code.

Less complex logic

Easier to maintain

Full exploitation of hardware speed requires full
exploitation of processor caches and reducing
cacheline bouncing. Some large piece of code must
be running in a hardware context for a reasonable
amount of time.

Problems

Tasks must be doable with the
resources available in one hardware
context

Unbalanced execution

Counter to current scheduler design.

How to do it in
some fashion now
Restrict init to one processor on
bootup

Isolate cpus to limit scheduler.

You can pin tasks in user space and
set real time priorities to avoid OS
interference.

Potential uses of
ASMP in the Kernel
Reclaim/Swap/Writeback

Compaction/Migration/KSM

Exploitation of cpus with different hardware
characteristics (low power processing cores on ARM?)

RCU

Time processing

Deferred tasks

Subsystem specific repeated actions (networking f.e.)

7

Performance issues
with many cores

60 cores using x86
processors

Its ummm... too
few.. Nvidia has
hundred to thousands
on GPUs.

GPU technology shows
the way ahead.

8

Performance
evolution

Future plans

The present (GPUs)
Not running
Linux

Different
programming
paradigm

Intel is catching
up here!

Fundamental
challenge to OS
design.

11

The ugly future

Exascale supercomputers are planned to
have millions to billions of cores.

Linux must support massive parallelism.

Fine grained locking is impossible.

Parallel processing requires for
performance in the future.

12

Conclusion

Any ideas how to
address these issues?

Performance today

Cache footprint

Bouncing cachelines

Atomic operations

Best performance is
a small function
that touches a
limited amount of
memory.

14

