
Making Kernel Objects Movable
A History and a way Forward

Christoph Lameter, cl@linux.com, linux.conf.au 2017 Hobart

mailto:cl@linux.com
http://linux.conf.au

Memory Management Basics
Linux Memory Reclaim is fundamental to Linux

The ideal of 4K size (a page) allocation / freeing and
reuse

No fragmentation because we aways allocate and free
the same sized memory.

But then there are allocations not 4k to deal with.

Slabs: The need for
smaller objects
* First a K&R allocator (SLOB)
* Then the Solaris SLAB approach
* Then SLUB page fraction based approach

* Acquire memory in pages from page allocator
* Internal fragmentation. Sparsely allocated blocks
* Inode/dentry reclaim and its issues

And the need for larger objects
4k size is tiny if i want to send 4GB of data.... 1 mio 4k blocks have to be managed to lets say
write file. No way that this could be fast.

Hardware needs to track 4k fragments. Massive Scatter Gather lists. Device drivers manage
state of 4k chunks.

TLB coverage issues.

Pointer issues

Subsystems work faster when large sizes are available.

Some hardware requires large contiguous memory (nics, graphics, embedded devices etc)

File sizes are increasing, I/O devices performance are increasing but the page size stay the same.
Result massive amounts of mangement overhead in th kernel.

Multiple sizes required!

No way around the fragmentation problem.
Memory gets garbled.

Gaps wasted that are not fit for further
allocation.

Remedial Techniques
Fragmentation Avoidance

SLAB

Page allocator

Huge Pages / Giant Pages

Preallocation of memory on bootup

Page Based Defragmentation

Defragmentation requires
Ability to rearrange objects in memory in such a way
that large contiguous sections of memory become
available.

Rearrangement requires the ability to MOVE objects if
they are in the way of creating contiguous memory.

But we can only move user space pages these days.

Existing Defragmentation Logic
Works based on page migration which was introduced to move user
space memory between NUMA nodes

Works only on user space pages where the kernel can track all
current users of the page.

Pages may be pinned by kernel or device driver (f.e RDMA
subsystem is doing this in a large scale)

Kernel pages (slab memory) are not migratable and  
are mixing freely with user space pages.

Existing APIs to move
objects

* System calls for user space pages
* Address space operations have callbacks
* Main problem is kernel memory in particular
Inode / Dentry caches for Filesystem metadata

Challenges in Making Kernel
object movable

Arbitrary references may exist to the object. Difficult to
track these references in particular if only a ref count
exists.

Complex allocation / freeing techniques in use

Seems like a daunting task (But then page migration was
considered to be impossible for a long time ...)

Solutions
References: Do an optimistic attempt to track down all
references. Do not migrate if all or not accounted for
(that is what page migration does)

Callbacks for the Slabs in the same way that the address
space operations provide? Tracking down of references
would then be subsystem specific and needs to be provided
when new kernel objects types are created.

Garbage collection: Require all pointers to be specially
marked and provide generic methods to recover memory.

Problem with garbage collection times: But then we
already have these reclaim passes that cause long delays.

Relates to many other techniques in the kernel.

Step by Step (like page migration?)
First allow the removal of an object from memory and the
restoration from storage (possible for inodes and dentries the
biggest problems). Requires only the ability to remove
references to an kernel object.

Then improve the process by performing direct copies without
going through a medium.

Enhance performance by exploiting the fact that we do not
hit storage. Move pointers instead of invalidating them etc.

What now?

Questions and Opinions?

Callbacks
We want both reclaim as well as object migration.

First step: Exempt the object from freeing

Page migration uses isolate_lru():  
void *isolate_object(struct kmem_cache *, void **objects, int node)

Reclaim/Move object: 
void migrate_objects(kmem_cache *, void **objects, int nr, int node, void *private)

object state must always be defined. Thus a ctor is required to bring objects into
a defined state upon creation. requirements are like for RCU slabs.

