
14th ANNUAL WORKSHOP 2018

New types of Memory, their support in Linux and
how to use them with RDMA
Christoph Lameter, Ph.D., R&D Team Lead

April 5, 2018
Jump Trading LLC

Overview

▪Why talk about memory?
▪ Brief review of traditional memory

support in Linux
▪ New memory features added to Linux in

the last years
▪ Upcoming work and future memory

support
▪Questions?

A Brief Overview of Traditional
Memory in Linux

“Classic” Memory handling

▪ Memory with uniform
access.
▪ Memory Zones (f.e. for DMA)
▪ NUMA Non Uniform

Memory Access
▪ Memory Affinities
▪ Memory Policies
▪ Cpusets, cgroups and containers
▪ Manual process migration
▪ RDMA

• Possible to all of these types of memory.
• Memory is pinned when registered for RDMA
• Becomes unmovable.
• Registering large areas of memory can lead

to kernel failures

Features added in the last years to
Linux Memory management

New Features and advanced memory support

▪ New Memory Zones
•Movable memory
• Device Memory (ZONE_DEVICE)
▪ Innovative use of NUMA nodes

• HBM memory node
• Memory node
• Memoryless node
• Device Memory Node
▪ Advanced memory support

• AutoNUMA: Automatic memory migration
• THP: Transparent Huge Pages
• On demand paging (ODP) for RDMA

• Avoids pinning
• Can register large amounts of memory (f.e. the whole process address space)
• Memory registration can be moved out of critical loops.

Special NUMA node use cases

▪ HBM support
• HBM in use for GPUs etc
• High bandwidth but also high latency
• Supported in the Xeon Phi f.e. as a separate NUMA node.
• Memory may behave differently under RDMA since the interface to HBM does not

follow the classic memory channel design.
▪ NUMA nodes with processors only

• Special use case where a load is computational intensive.
• All memory access is remote.
• Only makes sense for extremely high processor dependent loads.
▪ NUMA nodes with memory only

• Expand memory to keep large datasets continually accessible without having to
access slow secondary media.

Nonvolatile Memory

▪ Memory contents are preserved
▪ NVM can be addressed like regular memory
▪ New challenges with data consistency

In a typical use case NVM is handled like a regular block device.

I.e. (output of ls)
ls -l /dev/pmem0
brw-rw---- 1 root disk 259, 3 Mar 29 14:03 /dev/pmem0

It can be formatted and mounted
mkfs.ext4 /dev/pmem0
mount -o dax /dev/pmem0 /nvdimm

And files can be stored and retrieved from it like any other disk.

DAX (Direct Access to Device Memory)

File contents of a DAX file does not use the page cache for
mmapped accesses.

Since the Nonvolatile Memory is directly accessible: Mmap
directly establishes references to the data on the NVRAM module.

Contents cannot be evicted from memory thus there is no need to
use the page cache and subject pages to eviction.

The 4K size restriction of pages in the page cache is not valid for
DAX files. 2M and 1G mappings can exist in an NVM file. This
significantly reduces OS overhead and TLB pressure.

NVM challenges

Filesystems have something like transactions to ensure that the
filesystem is always coherent. So we need something like that
also on the level of NVM accesses. For that the processors cache
coherency handling needs to be modified to allow transactions on
NVM. Cachelines needs to be written back to NVM memory in such
a way that a consistent state exists in case of failure.

If the access to the NVM volume is through a filesystem then the
filesystem coherency mechanisms can ensure file consistency
within the constraints of each of their filesystems.

NVM design

▪ Block Devices
▪ Additional direct

DAX path via MMU
▪ Filesystem can

decide which path
is allowed

▪ Block device can
control flushing

▪ Preserve POSIX
file system
semantics as much
as possible

Non RDMA-able Non volatile memory

Linux supports two different types of Non volatile memory. The
overhead of keeping state per 4K page is about 2% of the capacity
of a NVM device. NVM device have huge capacity and so we may
end up dedicating significant amount of regular memory for NVM
management.
ZONE_DEVICE has to be available for an NVM device in order to
have metadata for 4K pages. If not the operations on NVM memory
areas are limited.

Heterogeneous Memory

Heterogeneous Memory

▪ Enhancement of the mmu_notifiers build on the cross
platform HSA (Heterogeneous System Architecture)
standard.

▪ Managing large memory for I/O device (GPUs,
coprocessors) with a virtual address space that allows the
use of cross device pointers.

▪ External memory behind PCI-E and other device specific
barriers that may be high latency and have their own
coherency methods.

▪ HMM synchronizes memory views on both sides
▪ ZONE_DEVICE used to manage reference to memory that

does not exist on the host side
▪ RDMA issues: Pages may never be mapped into main

memory. Significant overhead if pages have to be copied for
I/O. Maybe better to use PeerDirect?

Future types of Memory

Future

▪ RDMA squared
• Universal RDMAbility via a system wide ODP-like scheme?
• Shared distributed memory via RDMA (shmem style) and process sharing
• Remote “Persistent” Memory pools?
▪ Remote RDMA for large storage arrays

• pNFS with RDMA layout. Access large array of NVMe memory via RDMA.
• PeerDirect in remote nodes. Substitute device access for memory access.
• NVM memory pools. Shared shared memory pools and filesystems that support such

a shared memory pool.
▪ The memory hierarchy keeps expanding. Ultimately we need a

multilayered generic memory infrastructure that moves data
over a variety of busses to allow for optimal latency.

14th ANNUAL WORKSHOP 2018

Questions ?
Christoph Lameter

cl@linux.com

HBM See https://arxiv.org/pdf/1704.08273.pdf
SNIA https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
Wiki on pmem http://pmem.io
https://github.com/pmem

Notes

https://arxiv.org/pdf/1704.08273.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
http://pmem.io
https://github.com/pmem

