
MM101: Introduction to Memory
Management

Christopher Lameter <cl@linux.com>

@qant

• Memory and processes
• Real/Virtual memory and Paging
• Machine configuration
• Processes use of memory
• Overcommit
• Knobs
• Processor cache use

Overview

Pages and physical page frame numbers
● Division of memory into “pages”

○ 1-N bytes become split at page size
boundaries and become

M = N/page-size
pages

● We can then refer to memory by the
Page Frame Number (PFN) and an
offset into the page.

● Common size is 4k (Intel legacy issues)
● The MMU “creates” virtual addresses.

Basics of “paging”
● Processes have virtual memory
● -> PFN
● Page Tables

● Faults
○ Major
○ Minor

● Virtual vs physical

Process Memory
❏ Virtual memory maps to

physical memory
❏ A view of memory distinct

for each process.
❏ Pages shared
❏ Access control
❏ Copy on Write

Swap, Zero pages etc.

❖ Swap page
❖ Zero page
❖ Read data behavior
❖ Write data behavior
❖ Anonymous vs file backed pages

Kernel Basic memory information
/proc/meminfo

/sys/devices/system/ has
lots of more detailed
information on hardware
(processors and memory)

Commands:
numactl --hardware
free, top, dmesg

MemTotal: 31798552 kB
MemFree: 25949124 kB
MemAvailable: 30823580 kB
Buffers: 220988 kB
Cached: 4679188 kB
SwapCached: 0 kB
Active: 2803000 kB
Inactive: 2336992 kB
Active(anon): 240776 kB
Inactive(anon): 6432 kB
Active(file): 2562224 kB
Inactive(file): 2330560 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 2097148 kB
SwapFree: 2097148 kB
Dirty: 48 kB
Writeback: 0 kB

AnonPages: 239716 kB
Mapped: 195596 kB
Shmem: 7396 kB
Slab: 550628 kB
SReclaimable: 443040 kB
SUnreclaim: 107588 kB
KernelStack: 6840 kB
PageTables: 11176 kB

Inspecting a processes use of memory
/proc/<pid>/status
/proc/<pid>/*maps

(there are other files in /proc/<pid>/*
with more information about the
processes)

Commands:
ps, top

Name: sshd
VmPeak: 65772 kB
VmSize: 65772 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 6008 kB
VmRSS: 6008 kB
RssAnon: 1216 kB
RssFile: 4792 kB
RssShmem: 0 kB

VmData: 1332 kB
VmStk: 132 kB
VmExe: 492 kB
VmLib: 8076 kB
VmPTE: 168 kB
VmSwap: 0 kB

User limit (ulimit)
cl@nuc-kabylake:/proc/6713$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 123132
max locked memory (kbytes, -l) 16384
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 123132
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

➢ Max memory size
➢ Virtual memory
➢ Stack size
➢ and lots of other

controls.

Overcommit configuration
Virtual memory use vs physical

overcommit_kbytes
overcommit_memory

0 - overcommit. Guess if mem is available.
1 - Overcommit. Never say there is no memory
2 - Only allocate according to the ratio

overcommit_ratio
 total = swap + physical * ratio

Important VM control knobs
Found in /proc/sys/vm
More descriptions of these knobs in Kernel source code.
linux/Documentation/admin-guide

admin_reserve_kbytes dirty_writeback_centisecs min_free_kbytes numa_zonelist_order
stat_refresh block_dump drop_caches min_slab_ratio oom_dump_tasks swappiness
compact_memory extfrag_threshold min_unmapped_ratio oom_kill_allocating_task
user_reserve_kbytes compact_unevictable_allowed hugetlb_shm_group mmap_min_addr
overcommit_kbytes vfs_cache_pressure dirty_background_bytes laptop_mode
mmap_rnd_bits overcommit_memory watermark_scale_factor dirty_background_ratio
legacy_va_layout mmap_rnd_compat_bits overcommit_ratio zone_reclaim_mode dirty_bytes
lowmem_reserve_ratio nr_hugepages page-cluster dirty_expire_centisecs max_map_count
nr_hugepages_mempolicy panic_on_oom dirty_ratio memory_failure_early_kill
nr_overcommit_hugepages percpu_pagelist_fraction dirtytime_expire_seconds
memory_failure_recovery numa_stat stat_interval

● The online Kernel Administrators Guide:

https://www.kernel.org/doc/html/v4.14/admin-guide/index.

html

● Kernel.org has wikis and documentation

(www.kernel.org)

● Consult the manpages (especially for system calls and

coding)

Resource

https://www.kernel.org/doc/html/v4.14/admin-guide/index.html
https://www.kernel.org/doc/html/v4.14/admin-guide/index.html
http://www.kernel.org

“Simple” Memory Access
• UMA (Uniform Memory Access)
• Any access to memory has the same

characteristics
(performance and latency)

• The vast major of systems have only UMA.
• But there is always the processor cache hierarchy

– The CPU is fast, memory is slow
– Caches exist to avoid accesses to main

 memory
• Aliasing
• Coloring
• Cache Miss
• Trashing

NUMA Memory
• Memory with different access

characteristics
• Memory Affinities depending on

where a process was started
• Control NUMA allocs with

memory
policies

• System Partitioning using
Cpusets and Containers

• Manual memory migration
• Automatic memory migration

Huge Memory
• Typical memory is handled in chunks of base page size (Intel 4k,

IBM PowerX 64K, ARM 64K)
• Systems support larger memory chunks of memory called

Huge pages (Intel 2M)
• Must be pre configured on boot in order to guarantee that they are available
• Required often for I/O bottlenecks on Intel.
• 4TB requires 1 billion descriptors with 4K pages. Most of this is needed to

compensate for architectural problems on Intel. Intel processors
have difficulties using modern SSDs and high
speed devices without this.

• Large contiguous segments (I/O performance)
• Fragmentation issues
• Uses files on a special file system that must be

explicitly requested by mmap operations from
special files.

For questions and feedback please reach out to me at -
cl@linux.com
http://gentwo.org/christoph

mailto:cl@linux.com

