
40 Gigabytes per second
through the Linux page
cache

By Christoph Lameter, October 29, 2019

http://gentwo.org/christoph/40G-pagecache
cl@linux.com Open Source Summit Europe Twitter: @qant

mailto:cl@linux.com

Page cache performance issues

In our computing environment we continue to see issues with
page cache I/O. Most of software does not use special access
modes but it written for regular I/O and with that we are limited
to about 2-3Gbyte per second from a single thread.

There are ways to work around the performance issues using
direct I/O or huge pages but that usually requires application
modifications.

How to Scale
Regular I/O on

Linux when
running on Intel

processors

40GB/sec means updating
the status of 10 Million 4k
pages per second. I/O is
limited by the Kernel ability
to update the status of 10
million cache lines while
doing I/O.

A Memory Management Perspective
● Given the speed of modern NVME drives it is the OS

overhead that determines Page Cache performance.
● Memory latencies, cross node memory accesses and

cache hotness are key for performance.
● We need to optimize the computational speed of

handling 10 million 4K pages per second.
● Use NUMA features of the system to segment the

system into portions that run in parallel
● Scale Page cache performance

A unique Intel legacy problem with a 4K page size

● 4k is tiny given modern data transfers. 64K is even available on ARM. Not
so on Intel

● 64K page size cuts down the number of pages to be handled by the OS
from 10 Million to 600000 and significantly improves performance. In our
experience this problems does not exist on other platforms.

● Intel supports 2M page sizes and there are efforts to allow mixed pages of
2M and 4K in the Linux Kernel but it may take years to complete that work.

● Doing so is complex and possibly runs against problems of fragmentation
that have so far been considered unsolvable.

● With 2M pagesize the number of pages to handle would drop to ~20000.
● (1G Pagesize is also possible on x86 which would let this go down to 40

operations. 1G page size is currently not well supported)

Direct I/O and Huge Pages
● Direct I/O bypasses some of the OS overhead by reducing

4k page processing.
● But huge pages are not put in the page cache. Therefore

the contents of files are not shared between processes.
Data may have to be reread.

● Direct I/O requires application changes.
● Huge Pages ensure contiguous memory segments of 2M

each but can only be used with Direct I/O.

The Hardware the Intel RULER
We got a system from Intel called the Ruler system with 32 NVME drives. With
SPDK this can run at 50-56 GB/second (“up to 64GB/s”).

This presentation is about how to get close to that using
regular I/O through the page cache with normal applications

Supermicro 1U “Ruler” Server, 768G RAM, 100G Ethernet
2 NUMA Sockets Skylake-6148, 20 Cores
32 NVME drives 8TB each for a total of 256G
(Future system will have 32TB for 1PB in 1U)
32 PCIe Lanes per processor going to a PCIe switch

The Storage Architecture
2 Sockets with 384 Gbyte of memory
each and a 20 Core processor.

UPI cross connect between the two
sockets

16 NVME drives attached via a special
PCIe switch to each processor.

The “Ruler” architecture contains cross PCIe lanes between
both sockets too but as far as I can tell they are useless and
not really supported by the Operating System. They will
support PCIe multipathing at some point I guess.

Skylake
Processor

Skylake
ProcessorUPI

P
C

Ie

P
C

Ie

One Filesystem
includes all drives

Test Setup “No NUMA”
- NUMA localities not configured
- The Linux Kernel determines the

placements of threads and I/O
activities.

- There is a single volume striped
between both groups of NVME
drives.

- Simplest configuration.
- Lock contention across the sockets

which causes latencies via the UPI
link.

Skylake
Processor

Skylake
ProcessorUPI

P
C

Ie

P
C

Ie

Filesystem
Node 1

Filesystem
Node 0

NUMA Setup with 2 Nodes
- Threads and I/O bound to a NUMA

node
- The Linux Kernel is restricted to

scheduling within a socket.
- Two volumes are created for each

node so that each node can do
local I/O without serialization with
the other node.

- A straightforward NUMA
configuration parallelizing I/O

Skylake
Processor

Skylake
ProcessorUPI

P
C

Ie

P
C

Ie

Filesystem
Node 2

Filesystem
Node 0

Filesystem
Node 3

Filesystem
Node 1

Sub NUMA Clustering Setup with 4 Nodes
- BIOS configurations in Skylake

processors allow splitting the
processor into 2 slices.

- Each Skylake processor is managed
as 2 NUMA nodes for a total of 4
NUMA nodes in the system.

- Four volumes are created for each
node. I/O for each node flows
through dedicated PCIe Lanes.

- The most advanced parallelizing
configuration possible.

Skylake
Processor

Skylake
ProcessorUPI

P
C

Ie

P
C

Ie

Node 0 Node 1 Node 2 Node 3

BIOS issues with SNC
SNC splits the Skylake processor into two halves each with their own memory
controller and PCIe links.

SNC is a feature provided by Intel and so there was a setting in the BIOS
configuration but apparently this was not tested by the OEM.

● BIOS crash when selected
● NUMA localities incorrect when it booted (we now have 4 NUMA nodes not 2!)
● Direct contact with BIOS engineers of OEM to fix bugs was required before it

became usable.

After a couple of BIOS updates this actually worked right.

Tests were done
using the “fio”

tool
We are mainly interested in write
speed so we only do sequential

write tests.
These are 4GB sequential writes.

Scripts etc used are available from
http://gentwo.org/christoph/40G-page

cache

Note that segmenting the system
causes issues:

● Applications need to access the “local”
filesystem. Storage is localized like
memory. This may require application
changes.

● The “fio” tool supports binding threads
and the files created to nodes and those
options were used.

● Sharing of data between the “segments”
must be carefully done to avoid
performance loss.

http://gentwo.org/christoph/40G-pagecache
http://gentwo.org/christoph/40G-pagecache

Single Thread
Performance

Segmenting the system through
NUMA and SNC reduces the

resources available to a single
core

Segmentation requires additional parallel tasks
to compensate for the performance loss

Ext4 vs XFS
Performance

Ext4 is not geared for multicore
performance as much.

Throughput sinks above 16
threads

XFS was developed for performance and is
required for high performance setups

Top
Performance

The larger the parallelism in the
system through additional NUMA

Nodes the higher the speed

Top Performance requires contiguous memory
which is only available after a reboot

Dealing with Memory Fragmentation
● Reboot

Most contiguous memory is available after
reboot. After that performance is gradually
declining.

● Drop Page Cache and Metadata caches.
○ echo 3 >/proc/sys/vm/drop_caches
Frees as much memory as possible in the hope that
Linux can generate large contiguous memory.
Requires re-reading data from storage.

Aha!
Close to Hardware
Performance is possible even
with the Page Cache

How?

1. Localize data paths to storage

2. Avoid cross segment accesses.

3. Reboot for ultimate performance

4. Or do not use systems with tiny base page sizes
(Sorry, yes it is difficult to get around using Intel
systems)

In order to operate effectively
with large data sets the
Operating System needs to
operate on large contiguous
segments of memory

With some restrictions we can scale up the page cache. However, this means adapting the application to be able
to use parallel data paths to storage. An alternate approach is Direct I/O. That in turn requires other distinct
modifications to the applications.
The best solution would be to have the OS do what is necessary for high performance. We need:

● Contiguous memory
● Larger chunks of memory than 4k managed by the OS
● If we want to support multiple page sizes then we need the ability to defragment memory. A fundamental

change how we manage objects in the kernel. They would need to be movable in order to recover
contiguous memory areas to be able to consistently be able to provide larger page sizes than the basic
page.

There is work in progress in the Linux kernel by a few developers. However, significant work is required. At this
point the best guestimate is that it will take at least another 2 years to implement these things upstream. This
means another 5 years are required until the Linux distributions will have these features so this is the time for
workarounds and improvisation.

What next?
● Be aware of the limitations of

the Numaifying the page cache
● Application changes required.
● Help with I/O Subsystem

changes please.
● Larger Page size please.
● Generally we need more

developers to work on
managing objects in larger
sizes in the kernel.

