
Maximum Performance

How to get it and how to avoid pitfalls 

Christoph Lameter , PhD 
cl@linux.com

mailto:cl@linux.com


2

Performance
Just push a button? 

Systems are “optimized” by default for good 
general performance in all areas. 

For optimizations something needs to be sacrificed: 
- Money: More expensive systems 
- Performance in other areas (interactivity vs. batch) 
- Simplicity for complexity 
- Maintenance effort 
- Highly paid and highly experienced experts for 

software development and system administration



3

Today Software APIs limit performance 
at the high end

The higher the software API the 
more overhead which reduces 
performance. Higher level 
software APIs are easy to use and allow rapid 
development of software. 

The lower the software API the closer to hardware 
and the more high performance features of the 
hardware can be used and the more control is 
possible over devices etc. The APIs become more 
difficult to use and require more expertise to use 
in the right way.



Classic Analysis of Performance Bottlenecks

• Application analysis 
➢“top” and various diagnostic counters. 

• Process states and their meaning 
➢Running / D / S 

• Page Faults 
➢Speak in a normal tone of voice, and listen 

attentively. 

• Interrupts and I/O 
➢Monitor how frequently they occur 

• Latency 
➢System is optimized for throughput by default.



Storage: Optimizing for throughput

• Traditional classic rotational media. 

• Today mostly flash based storage 

• Large RAID Arrays 

• Network storage 

• Cloud 

• NVRAM/NVDIMM



6

Classic Rotational Storage Optimization
- Head movements need to be minimized 
- Sorting of request by location on disk 
- Read a lot whereever you are 
- Send large batches of requests to devices 
- Optimize overhead of request submission 
- RAID configs to get around the bandwidth 

limits of devices (~100-300MB/sec) and 
increase reliability.

However, not for 
- Caching controllers 
- RAID controllers 
- Flash storage 
- Network storage 
- Cloud



7

Storage today is network communication

- There is a system controlling “storage” at the 
other end. 

- This system usually runs Linux as well and 
caches requests and works them in a device 
specific way. 

- Problem is how to effectively communicate with  
   that system.  
- Performance is foremost a networking problem 
- And then an issue that the device firmware/software 

has to deal with 

Therefore: 
- Block storage layers in the kernel are necessary 

for legacy reasons. Those limit performance to 
1 to 2 Gigabyte per seconds. 

- Kernel bypass is possible through network protocols and 
done frequently 



Networking: Optimizing for throughput

• Socket API designed for 10M network links 

• Works well at 1G. Single thread can handle this. 

• Trouble at 10G. Requires multiple threads. 

• Higher speed require different APIs and more 
hardware offload. RDMA? Proprietary offload? 

• We are right now introducing 100G networks in 
the industry. What now? 

• Recent work in Redhat by Jesper Dangaard 
Brouer doubled network stack performance. Able 
to send ~10mio pps now (idealized test). 
However, new NICs can send 150 mio pps.



9

Networking API
• Language specific network access 
• Buffered I/O via glibc 
• Socket API 
• RDMA APIs / Offload APIs 
• FPGA (no longer regular coding) 
• ASIC 
• Analog



Networking:  
Optimizing for latency

Default is to optimize for performance! 
➢Higher response time than expected 
➢Opportunistic waiting periods in hardware and 

software. 
➢Power results in constraints on latency 
➢Switches are optimized for throughput 
➢Large packets are evil



Optimization for memory access

• Memory access depends on effective cpu caching 

• TLB misses 

• Prefetching 

• NUMA 

• Increasing complexity of memory access 

• NVDIMM 

• Device mapped memory 

• New levels of caching are continually 
provided.



12

Processor Optimizations
- Algorithm depends on the performance of the 

processor 
- OS is seen to be interfering with its maintenance 

activities. 
- Ability to use capabilities of a processor depend 

on the cache friendly nature of the code. Thus for 
ultimate performance software needs to be rewritten. 

- Moore’s law ends. Processor performance cannot 
grow anymore like in the past. We want the max 
we can get out of what we paid for. 
 



Floating point throughput optimization

• Parallelism is key here. 

• Vector instruction sets for exploiting the parallelism 
in each core. AVX etc. 

• Parallel execution on multiple cores. 
• Parallel execution on multiple nodes in a cluster 

• Concurrency determines performance. Code 
execution must be targeted for performance. Thus 
rewrites by specialists can yield significant 
improvements  

• Dedicated Floating point processors and GPUs 
➢More Parallel threats 
➢Parallel code execution



14

Restraining the Operating System

- On multicore system limit Os activity as much as 
possible to a set of cores on which we cannot get 
full performance 

- The remainder are more or less available fully 
for the applications. 

- Get the OS out of the data path. OS controls but 
is not directly handling data transfers. 

- NOHZ_FULL approach in Linux development 
upstream 

- RDMA APIs of various flavors (DPDK etc etc)



Conclusions

• Optimization changes with the hardware available. 

• Devices approach memory speed and therefore 
existing APIs become problematic. 

• Operating system often in the way of the data 
path. OS needs to exercise control but allow 
bypass for data transfers. 

• For ultimate performance applications need to be 
redesigned for the hardware they run on. 

• Caching is the key for higher performance and 
they abound in numerous flavors. Mastery of those 
is required for ultimate performance.


