]> Gentwo Git Trees - linux/.git/blob
4.1.4-00834-gcd9380b
[linux/.git] /
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * drivers/acpi/power.c - ACPI Power Resources management.
4 *
5 * Copyright (C) 2001 - 2015 Intel Corp.
6 * Author: Andy Grover <andrew.grover@intel.com>
7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 */
10
11 /*
12 * ACPI power-managed devices may be controlled in two ways:
13 * 1. via "Device Specific (D-State) Control"
14 * 2. via "Power Resource Control".
15 * The code below deals with ACPI Power Resources control.
16 *
17 * An ACPI "power resource object" represents a software controllable power
18 * plane, clock plane, or other resource depended on by a device.
19 *
20 * A device may rely on multiple power resources, and a power resource
21 * may be shared by multiple devices.
22 */
23
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25
26 #include <linux/dmi.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/string_choices.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/sysfs.h>
35 #include <linux/acpi.h>
36 #include "sleep.h"
37 #include "internal.h"
38
39 #define ACPI_POWER_CLASS "power_resource"
40 #define ACPI_POWER_DEVICE_NAME "Power Resource"
41 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
42 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
43 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
44
45 struct acpi_power_dependent_device {
46 struct device *dev;
47 struct list_head node;
48 };
49
50 struct acpi_power_resource {
51 struct acpi_device device;
52 struct list_head list_node;
53 u32 system_level;
54 u32 order;
55 unsigned int ref_count;
56 u8 state;
57 struct mutex resource_lock;
58 struct list_head dependents;
59 };
60
61 struct acpi_power_resource_entry {
62 struct list_head node;
63 struct acpi_power_resource *resource;
64 };
65
66 static bool unused_power_resources_quirk;
67
68 static LIST_HEAD(acpi_power_resource_list);
69 static DEFINE_MUTEX(power_resource_list_lock);
70
71 /* --------------------------------------------------------------------------
72 Power Resource Management
73 -------------------------------------------------------------------------- */
74
75 static inline const char *resource_dev_name(struct acpi_power_resource *pr)
76 {
77 return dev_name(&pr->device.dev);
78 }
79
80 static inline
81 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
82 {
83 return container_of(device, struct acpi_power_resource, device);
84 }
85
86 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
87 {
88 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
89
90 if (!device)
91 return NULL;
92
93 return to_power_resource(device);
94 }
95
96 static int acpi_power_resources_list_add(acpi_handle handle,
97 struct list_head *list)
98 {
99 struct acpi_power_resource *resource = acpi_power_get_context(handle);
100 struct acpi_power_resource_entry *entry;
101
102 if (!resource || !list)
103 return -EINVAL;
104
105 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
106 if (!entry)
107 return -ENOMEM;
108
109 entry->resource = resource;
110 if (!list_empty(list)) {
111 struct acpi_power_resource_entry *e;
112
113 list_for_each_entry(e, list, node)
114 if (e->resource->order > resource->order) {
115 list_add_tail(&entry->node, &e->node);
116 return 0;
117 }
118 }
119 list_add_tail(&entry->node, list);
120 return 0;
121 }
122
123 void acpi_power_resources_list_free(struct list_head *list)
124 {
125 struct acpi_power_resource_entry *entry, *e;
126
127 list_for_each_entry_safe(entry, e, list, node) {
128 list_del(&entry->node);
129 kfree(entry);
130 }
131 }
132
133 static bool acpi_power_resource_is_dup(union acpi_object *package,
134 unsigned int start, unsigned int i)
135 {
136 acpi_handle rhandle, dup;
137 unsigned int j;
138
139 /* The caller is expected to check the package element types */
140 rhandle = package->package.elements[i].reference.handle;
141 for (j = start; j < i; j++) {
142 dup = package->package.elements[j].reference.handle;
143 if (dup == rhandle)
144 return true;
145 }
146
147 return false;
148 }
149
150 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
151 struct list_head *list)
152 {
153 unsigned int i;
154 int err = 0;
155
156 for (i = start; i < package->package.count; i++) {
157 union acpi_object *element = &package->package.elements[i];
158 struct acpi_device *rdev;
159 acpi_handle rhandle;
160
161 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
162 err = -ENODATA;
163 break;
164 }
165 rhandle = element->reference.handle;
166 if (!rhandle) {
167 err = -ENODEV;
168 break;
169 }
170
171 /* Some ACPI tables contain duplicate power resource references */
172 if (acpi_power_resource_is_dup(package, start, i))
173 continue;
174
175 rdev = acpi_add_power_resource(rhandle);
176 if (!rdev) {
177 err = -ENODEV;
178 break;
179 }
180 err = acpi_power_resources_list_add(rhandle, list);
181 if (err)
182 break;
183 }
184 if (err)
185 acpi_power_resources_list_free(list);
186
187 return err;
188 }
189
190 static int __get_state(acpi_handle handle, u8 *state)
191 {
192 acpi_status status = AE_OK;
193 unsigned long long sta = 0;
194 u8 cur_state;
195
196 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
197 if (ACPI_FAILURE(status))
198 return -ENODEV;
199
200 cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
201
202 acpi_handle_debug(handle, "Power resource is %s\n",
203 str_on_off(cur_state));
204
205 *state = cur_state;
206 return 0;
207 }
208
209 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
210 {
211 if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
212 int ret;
213
214 ret = __get_state(resource->device.handle, &resource->state);
215 if (ret)
216 return ret;
217 }
218
219 *state = resource->state;
220 return 0;
221 }
222
223 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
224 {
225 struct acpi_power_resource_entry *entry;
226 u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
227
228 if (!list || !state)
229 return -EINVAL;
230
231 /* The state of the list is 'on' IFF all resources are 'on'. */
232 list_for_each_entry(entry, list, node) {
233 struct acpi_power_resource *resource = entry->resource;
234 int result;
235
236 mutex_lock(&resource->resource_lock);
237 result = acpi_power_get_state(resource, &cur_state);
238 mutex_unlock(&resource->resource_lock);
239 if (result)
240 return result;
241
242 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
243 break;
244 }
245
246 pr_debug("Power resource list is %s\n", str_on_off(cur_state));
247
248 *state = cur_state;
249 return 0;
250 }
251
252 static int
253 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
254 struct device *dev)
255 {
256 struct acpi_power_dependent_device *dep;
257 int ret = 0;
258
259 mutex_lock(&resource->resource_lock);
260 list_for_each_entry(dep, &resource->dependents, node) {
261 /* Only add it once */
262 if (dep->dev == dev)
263 goto unlock;
264 }
265
266 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
267 if (!dep) {
268 ret = -ENOMEM;
269 goto unlock;
270 }
271
272 dep->dev = dev;
273 list_add_tail(&dep->node, &resource->dependents);
274 dev_dbg(dev, "added power dependency to [%s]\n",
275 resource_dev_name(resource));
276
277 unlock:
278 mutex_unlock(&resource->resource_lock);
279 return ret;
280 }
281
282 static void
283 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
284 struct device *dev)
285 {
286 struct acpi_power_dependent_device *dep;
287
288 mutex_lock(&resource->resource_lock);
289 list_for_each_entry(dep, &resource->dependents, node) {
290 if (dep->dev == dev) {
291 list_del(&dep->node);
292 kfree(dep);
293 dev_dbg(dev, "removed power dependency to [%s]\n",
294 resource_dev_name(resource));
295 break;
296 }
297 }
298 mutex_unlock(&resource->resource_lock);
299 }
300
301 /**
302 * acpi_device_power_add_dependent - Add dependent device of this ACPI device
303 * @adev: ACPI device pointer
304 * @dev: Dependent device
305 *
306 * If @adev has non-empty _PR0 the @dev is added as dependent device to all
307 * power resources returned by it. This means that whenever these power
308 * resources are turned _ON the dependent devices get runtime resumed. This
309 * is needed for devices such as PCI to allow its driver to re-initialize
310 * it after it went to D0uninitialized.
311 *
312 * If @adev does not have _PR0 this does nothing.
313 *
314 * Returns %0 in case of success and negative errno otherwise.
315 */
316 int acpi_device_power_add_dependent(struct acpi_device *adev,
317 struct device *dev)
318 {
319 struct acpi_power_resource_entry *entry;
320 struct list_head *resources;
321 int ret;
322
323 if (!adev->flags.power_manageable)
324 return 0;
325
326 resources = &adev->power.states[ACPI_STATE_D0].resources;
327 list_for_each_entry(entry, resources, node) {
328 ret = acpi_power_resource_add_dependent(entry->resource, dev);
329 if (ret)
330 goto err;
331 }
332
333 return 0;
334
335 err:
336 list_for_each_entry(entry, resources, node)
337 acpi_power_resource_remove_dependent(entry->resource, dev);
338
339 return ret;
340 }
341
342 /**
343 * acpi_device_power_remove_dependent - Remove dependent device
344 * @adev: ACPI device pointer
345 * @dev: Dependent device
346 *
347 * Does the opposite of acpi_device_power_add_dependent() and removes the
348 * dependent device if it is found. Can be called to @adev that does not
349 * have _PR0 as well.
350 */
351 void acpi_device_power_remove_dependent(struct acpi_device *adev,
352 struct device *dev)
353 {
354 struct acpi_power_resource_entry *entry;
355 struct list_head *resources;
356
357 if (!adev->flags.power_manageable)
358 return;
359
360 resources = &adev->power.states[ACPI_STATE_D0].resources;
361 list_for_each_entry_reverse(entry, resources, node)
362 acpi_power_resource_remove_dependent(entry->resource, dev);
363 }
364
365 static int __acpi_power_on(struct acpi_power_resource *resource)
366 {
367 acpi_handle handle = resource->device.handle;
368 struct acpi_power_dependent_device *dep;
369 acpi_status status = AE_OK;
370
371 status = acpi_evaluate_object(handle, "_ON", NULL, NULL);
372 if (ACPI_FAILURE(status)) {
373 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
374 return -ENODEV;
375 }
376
377 resource->state = ACPI_POWER_RESOURCE_STATE_ON;
378
379 acpi_handle_debug(handle, "Power resource turned on\n");
380
381 /*
382 * If there are other dependents on this power resource we need to
383 * resume them now so that their drivers can re-initialize the
384 * hardware properly after it went back to D0.
385 */
386 if (list_empty(&resource->dependents) ||
387 list_is_singular(&resource->dependents))
388 return 0;
389
390 list_for_each_entry(dep, &resource->dependents, node) {
391 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
392 resource_dev_name(resource));
393 pm_request_resume(dep->dev);
394 }
395
396 return 0;
397 }
398
399 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
400 {
401 int result = 0;
402
403 if (resource->ref_count++) {
404 acpi_handle_debug(resource->device.handle,
405 "Power resource already on\n");
406 } else {
407 result = __acpi_power_on(resource);
408 if (result)
409 resource->ref_count--;
410 }
411 return result;
412 }
413
414 static int acpi_power_on(struct acpi_power_resource *resource)
415 {
416 int result;
417
418 mutex_lock(&resource->resource_lock);
419 result = acpi_power_on_unlocked(resource);
420 mutex_unlock(&resource->resource_lock);
421 return result;
422 }
423
424 static int __acpi_power_off(struct acpi_power_resource *resource)
425 {
426 acpi_handle handle = resource->device.handle;
427 acpi_status status;
428
429 status = acpi_evaluate_object(handle, "_OFF", NULL, NULL);
430 if (ACPI_FAILURE(status)) {
431 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
432 return -ENODEV;
433 }
434
435 resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
436
437 acpi_handle_debug(handle, "Power resource turned off\n");
438
439 return 0;
440 }
441
442 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
443 {
444 int result = 0;
445
446 if (!resource->ref_count) {
447 acpi_handle_debug(resource->device.handle,
448 "Power resource already off\n");
449 return 0;
450 }
451
452 if (--resource->ref_count) {
453 acpi_handle_debug(resource->device.handle,
454 "Power resource still in use\n");
455 } else {
456 result = __acpi_power_off(resource);
457 if (result)
458 resource->ref_count++;
459 }
460 return result;
461 }
462
463 static int acpi_power_off(struct acpi_power_resource *resource)
464 {
465 int result;
466
467 mutex_lock(&resource->resource_lock);
468 result = acpi_power_off_unlocked(resource);
469 mutex_unlock(&resource->resource_lock);
470 return result;
471 }
472
473 static int acpi_power_off_list(struct list_head *list)
474 {
475 struct acpi_power_resource_entry *entry;
476 int result = 0;
477
478 list_for_each_entry_reverse(entry, list, node) {
479 result = acpi_power_off(entry->resource);
480 if (result)
481 goto err;
482 }
483 return 0;
484
485 err:
486 list_for_each_entry_continue(entry, list, node)
487 acpi_power_on(entry->resource);
488
489 return result;
490 }
491
492 static int acpi_power_on_list(struct list_head *list)
493 {
494 struct acpi_power_resource_entry *entry;
495 int result = 0;
496
497 list_for_each_entry(entry, list, node) {
498 result = acpi_power_on(entry->resource);
499 if (result)
500 goto err;
501 }
502 return 0;
503
504 err:
505 list_for_each_entry_continue_reverse(entry, list, node)
506 acpi_power_off(entry->resource);
507
508 return result;
509 }
510
511 static struct attribute *attrs[] = {
512 NULL,
513 };
514
515 static const struct attribute_group attr_groups[] = {
516 [ACPI_STATE_D0] = {
517 .name = "power_resources_D0",
518 .attrs = attrs,
519 },
520 [ACPI_STATE_D1] = {
521 .name = "power_resources_D1",
522 .attrs = attrs,
523 },
524 [ACPI_STATE_D2] = {
525 .name = "power_resources_D2",
526 .attrs = attrs,
527 },
528 [ACPI_STATE_D3_HOT] = {
529 .name = "power_resources_D3hot",
530 .attrs = attrs,
531 },
532 };
533
534 static const struct attribute_group wakeup_attr_group = {
535 .name = "power_resources_wakeup",
536 .attrs = attrs,
537 };
538
539 static void acpi_power_hide_list(struct acpi_device *adev,
540 struct list_head *resources,
541 const struct attribute_group *attr_group)
542 {
543 struct acpi_power_resource_entry *entry;
544
545 if (list_empty(resources))
546 return;
547
548 list_for_each_entry_reverse(entry, resources, node) {
549 struct acpi_device *res_dev = &entry->resource->device;
550
551 sysfs_remove_link_from_group(&adev->dev.kobj,
552 attr_group->name,
553 dev_name(&res_dev->dev));
554 }
555 sysfs_remove_group(&adev->dev.kobj, attr_group);
556 }
557
558 static void acpi_power_expose_list(struct acpi_device *adev,
559 struct list_head *resources,
560 const struct attribute_group *attr_group)
561 {
562 struct acpi_power_resource_entry *entry;
563 int ret;
564
565 if (list_empty(resources))
566 return;
567
568 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
569 if (ret)
570 return;
571
572 list_for_each_entry(entry, resources, node) {
573 struct acpi_device *res_dev = &entry->resource->device;
574
575 ret = sysfs_add_link_to_group(&adev->dev.kobj,
576 attr_group->name,
577 &res_dev->dev.kobj,
578 dev_name(&res_dev->dev));
579 if (ret) {
580 acpi_power_hide_list(adev, resources, attr_group);
581 break;
582 }
583 }
584 }
585
586 static void acpi_power_expose_hide(struct acpi_device *adev,
587 struct list_head *resources,
588 const struct attribute_group *attr_group,
589 bool expose)
590 {
591 if (expose)
592 acpi_power_expose_list(adev, resources, attr_group);
593 else
594 acpi_power_hide_list(adev, resources, attr_group);
595 }
596
597 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
598 {
599 int state;
600
601 if (adev->wakeup.flags.valid)
602 acpi_power_expose_hide(adev, &adev->wakeup.resources,
603 &wakeup_attr_group, add);
604
605 if (!adev->power.flags.power_resources)
606 return;
607
608 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
609 acpi_power_expose_hide(adev,
610 &adev->power.states[state].resources,
611 &attr_groups[state], add);
612 }
613
614 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
615 {
616 struct acpi_power_resource_entry *entry;
617 int system_level = 5;
618
619 list_for_each_entry(entry, list, node) {
620 struct acpi_power_resource *resource = entry->resource;
621 u8 state;
622
623 mutex_lock(&resource->resource_lock);
624
625 /*
626 * Make sure that the power resource state and its reference
627 * counter value are consistent with each other.
628 */
629 if (!resource->ref_count &&
630 !acpi_power_get_state(resource, &state) &&
631 state == ACPI_POWER_RESOURCE_STATE_ON)
632 __acpi_power_off(resource);
633
634 if (system_level > resource->system_level)
635 system_level = resource->system_level;
636
637 mutex_unlock(&resource->resource_lock);
638 }
639 *system_level_p = system_level;
640 return 0;
641 }
642
643 /* --------------------------------------------------------------------------
644 Device Power Management
645 -------------------------------------------------------------------------- */
646
647 /**
648 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
649 * ACPI 3.0) _PSW (Power State Wake)
650 * @dev: Device to handle.
651 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
652 * @sleep_state: Target sleep state of the system.
653 * @dev_state: Target power state of the device.
654 *
655 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
656 * State Wake) for the device, if present. On failure reset the device's
657 * wakeup.flags.valid flag.
658 *
659 * RETURN VALUE:
660 * 0 if either _DSW or _PSW has been successfully executed
661 * 0 if neither _DSW nor _PSW has been found
662 * -ENODEV if the execution of either _DSW or _PSW has failed
663 */
664 int acpi_device_sleep_wake(struct acpi_device *dev,
665 int enable, int sleep_state, int dev_state)
666 {
667 union acpi_object in_arg[3];
668 struct acpi_object_list arg_list = { 3, in_arg };
669 acpi_status status = AE_OK;
670
671 /*
672 * Try to execute _DSW first.
673 *
674 * Three arguments are needed for the _DSW object:
675 * Argument 0: enable/disable the wake capabilities
676 * Argument 1: target system state
677 * Argument 2: target device state
678 * When _DSW object is called to disable the wake capabilities, maybe
679 * the first argument is filled. The values of the other two arguments
680 * are meaningless.
681 */
682 in_arg[0].type = ACPI_TYPE_INTEGER;
683 in_arg[0].integer.value = enable;
684 in_arg[1].type = ACPI_TYPE_INTEGER;
685 in_arg[1].integer.value = sleep_state;
686 in_arg[2].type = ACPI_TYPE_INTEGER;
687 in_arg[2].integer.value = dev_state;
688 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
689 if (ACPI_SUCCESS(status)) {
690 return 0;
691 } else if (status != AE_NOT_FOUND) {
692 acpi_handle_info(dev->handle, "_DSW execution failed\n");
693 dev->wakeup.flags.valid = 0;
694 return -ENODEV;
695 }
696
697 /* Execute _PSW */
698 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
699 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
700 acpi_handle_info(dev->handle, "_PSW execution failed\n");
701 dev->wakeup.flags.valid = 0;
702 return -ENODEV;
703 }
704
705 return 0;
706 }
707
708 /*
709 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
710 * 1. Power on the power resources required for the wakeup device
711 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
712 * State Wake) for the device, if present
713 */
714 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
715 {
716 int err = 0;
717
718 if (!dev || !dev->wakeup.flags.valid)
719 return -EINVAL;
720
721 mutex_lock(&acpi_device_lock);
722
723 dev_dbg(&dev->dev, "Enabling wakeup power (count %d)\n",
724 dev->wakeup.prepare_count);
725
726 if (dev->wakeup.prepare_count++)
727 goto out;
728
729 err = acpi_power_on_list(&dev->wakeup.resources);
730 if (err) {
731 dev_err(&dev->dev, "Cannot turn on wakeup power resources\n");
732 dev->wakeup.flags.valid = 0;
733 goto out;
734 }
735
736 /*
737 * Passing 3 as the third argument below means the device may be
738 * put into arbitrary power state afterward.
739 */
740 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
741 if (err) {
742 acpi_power_off_list(&dev->wakeup.resources);
743 dev->wakeup.prepare_count = 0;
744 goto out;
745 }
746
747 dev_dbg(&dev->dev, "Wakeup power enabled\n");
748
749 out:
750 mutex_unlock(&acpi_device_lock);
751 return err;
752 }
753
754 /*
755 * Shutdown a wakeup device, counterpart of above method
756 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
757 * State Wake) for the device, if present
758 * 2. Shutdown down the power resources
759 */
760 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
761 {
762 struct acpi_power_resource_entry *entry;
763 int err = 0;
764
765 if (!dev || !dev->wakeup.flags.valid)
766 return -EINVAL;
767
768 mutex_lock(&acpi_device_lock);
769
770 dev_dbg(&dev->dev, "Disabling wakeup power (count %d)\n",
771 dev->wakeup.prepare_count);
772
773 /* Do nothing if wakeup power has not been enabled for this device. */
774 if (dev->wakeup.prepare_count <= 0)
775 goto out;
776
777 if (--dev->wakeup.prepare_count > 0)
778 goto out;
779
780 err = acpi_device_sleep_wake(dev, 0, 0, 0);
781 if (err)
782 goto out;
783
784 /*
785 * All of the power resources in the list need to be turned off even if
786 * there are errors.
787 */
788 list_for_each_entry(entry, &dev->wakeup.resources, node) {
789 int ret;
790
791 ret = acpi_power_off(entry->resource);
792 if (ret && !err)
793 err = ret;
794 }
795 if (err) {
796 dev_err(&dev->dev, "Cannot turn off wakeup power resources\n");
797 dev->wakeup.flags.valid = 0;
798 goto out;
799 }
800
801 dev_dbg(&dev->dev, "Wakeup power disabled\n");
802
803 out:
804 mutex_unlock(&acpi_device_lock);
805 return err;
806 }
807
808 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
809 {
810 u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
811 int result = 0;
812 int i = 0;
813
814 if (!device || !state)
815 return -EINVAL;
816
817 /*
818 * We know a device's inferred power state when all the resources
819 * required for a given D-state are 'on'.
820 */
821 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
822 struct list_head *list = &device->power.states[i].resources;
823
824 if (list_empty(list))
825 continue;
826
827 result = acpi_power_get_list_state(list, &list_state);
828 if (result)
829 return result;
830
831 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
832 *state = i;
833 return 0;
834 }
835 }
836
837 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
838 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
839 return 0;
840 }
841
842 int acpi_power_on_resources(struct acpi_device *device, int state)
843 {
844 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
845 return -EINVAL;
846
847 return acpi_power_on_list(&device->power.states[state].resources);
848 }
849
850 int acpi_power_transition(struct acpi_device *device, int state)
851 {
852 int result = 0;
853
854 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
855 return -EINVAL;
856
857 if (device->power.state == state || !device->flags.power_manageable)
858 return 0;
859
860 if ((device->power.state < ACPI_STATE_D0)
861 || (device->power.state > ACPI_STATE_D3_COLD))
862 return -ENODEV;
863
864 /*
865 * First we reference all power resources required in the target list
866 * (e.g. so the device doesn't lose power while transitioning). Then,
867 * we dereference all power resources used in the current list.
868 */
869 if (state < ACPI_STATE_D3_COLD)
870 result = acpi_power_on_list(
871 &device->power.states[state].resources);
872
873 if (!result && device->power.state < ACPI_STATE_D3_COLD)
874 acpi_power_off_list(
875 &device->power.states[device->power.state].resources);
876
877 /* We shouldn't change the state unless the above operations succeed. */
878 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
879
880 return result;
881 }
882
883 static void acpi_release_power_resource(struct device *dev)
884 {
885 struct acpi_device *device = to_acpi_device(dev);
886 struct acpi_power_resource *resource;
887
888 resource = container_of(device, struct acpi_power_resource, device);
889
890 mutex_lock(&power_resource_list_lock);
891 list_del(&resource->list_node);
892 mutex_unlock(&power_resource_list_lock);
893
894 acpi_free_pnp_ids(&device->pnp);
895 kfree(resource);
896 }
897
898 static ssize_t resource_in_use_show(struct device *dev,
899 struct device_attribute *attr,
900 char *buf)
901 {
902 struct acpi_power_resource *resource;
903
904 resource = to_power_resource(to_acpi_device(dev));
905 return sprintf(buf, "%u\n", !!resource->ref_count);
906 }
907 static DEVICE_ATTR_RO(resource_in_use);
908
909 static void acpi_power_sysfs_remove(struct acpi_device *device)
910 {
911 device_remove_file(&device->dev, &dev_attr_resource_in_use);
912 }
913
914 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
915 {
916 mutex_lock(&power_resource_list_lock);
917
918 if (!list_empty(&acpi_power_resource_list)) {
919 struct acpi_power_resource *r;
920
921 list_for_each_entry(r, &acpi_power_resource_list, list_node)
922 if (r->order > resource->order) {
923 list_add_tail(&resource->list_node, &r->list_node);
924 goto out;
925 }
926 }
927 list_add_tail(&resource->list_node, &acpi_power_resource_list);
928
929 out:
930 mutex_unlock(&power_resource_list_lock);
931 }
932
933 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
934 {
935 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
936 struct acpi_power_resource *resource;
937 union acpi_object acpi_object;
938 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
939 acpi_status status;
940 u8 state_dummy;
941 int result;
942
943 if (device)
944 return device;
945
946 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
947 if (!resource)
948 return NULL;
949
950 device = &resource->device;
951 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
952 acpi_release_power_resource);
953 mutex_init(&resource->resource_lock);
954 INIT_LIST_HEAD(&resource->list_node);
955 INIT_LIST_HEAD(&resource->dependents);
956 strscpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
957 strscpy(acpi_device_class(device), ACPI_POWER_CLASS);
958 device->power.state = ACPI_STATE_UNKNOWN;
959 device->flags.match_driver = true;
960
961 /* Evaluate the object to get the system level and resource order. */
962 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
963 if (ACPI_FAILURE(status))
964 goto err;
965
966 resource->system_level = acpi_object.power_resource.system_level;
967 resource->order = acpi_object.power_resource.resource_order;
968 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
969
970 /* Get the initial state or just flip it on if that fails. */
971 if (acpi_power_get_state(resource, &state_dummy))
972 __acpi_power_on(resource);
973
974 acpi_handle_info(handle, "New power resource\n");
975
976 result = acpi_tie_acpi_dev(device);
977 if (result)
978 goto err;
979
980 result = acpi_device_add(device);
981 if (result)
982 goto err;
983
984 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
985 device->remove = acpi_power_sysfs_remove;
986
987 acpi_power_add_resource_to_list(resource);
988 acpi_device_add_finalize(device);
989 return device;
990
991 err:
992 acpi_release_power_resource(&device->dev);
993 return NULL;
994 }
995
996 #ifdef CONFIG_ACPI_SLEEP
997 void acpi_resume_power_resources(void)
998 {
999 struct acpi_power_resource *resource;
1000
1001 mutex_lock(&power_resource_list_lock);
1002
1003 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
1004 int result;
1005 u8 state;
1006
1007 mutex_lock(&resource->resource_lock);
1008
1009 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
1010 result = acpi_power_get_state(resource, &state);
1011 if (result) {
1012 mutex_unlock(&resource->resource_lock);
1013 continue;
1014 }
1015
1016 if (state == ACPI_POWER_RESOURCE_STATE_OFF
1017 && resource->ref_count) {
1018 acpi_handle_debug(resource->device.handle, "Turning ON\n");
1019 __acpi_power_on(resource);
1020 }
1021
1022 mutex_unlock(&resource->resource_lock);
1023 }
1024
1025 mutex_unlock(&power_resource_list_lock);
1026 }
1027 #endif
1028
1029 static const struct dmi_system_id dmi_leave_unused_power_resources_on[] = {
1030 {
1031 /*
1032 * The Toshiba Click Mini has a CPR3 power-resource which must
1033 * be on for the touchscreen to work, but which is not in any
1034 * _PR? lists. The other 2 affected power-resources are no-ops.
1035 */
1036 .matches = {
1037 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
1038 DMI_MATCH(DMI_PRODUCT_NAME, "SATELLITE Click Mini L9W-B"),
1039 },
1040 },
1041 {}
1042 };
1043
1044 /**
1045 * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1046 */
1047 void acpi_turn_off_unused_power_resources(void)
1048 {
1049 struct acpi_power_resource *resource;
1050
1051 if (unused_power_resources_quirk)
1052 return;
1053
1054 mutex_lock(&power_resource_list_lock);
1055
1056 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1057 mutex_lock(&resource->resource_lock);
1058
1059 if (!resource->ref_count &&
1060 resource->state == ACPI_POWER_RESOURCE_STATE_ON) {
1061 acpi_handle_debug(resource->device.handle, "Turning OFF\n");
1062 __acpi_power_off(resource);
1063 }
1064
1065 mutex_unlock(&resource->resource_lock);
1066 }
1067
1068 mutex_unlock(&power_resource_list_lock);
1069 }
1070
1071 void __init acpi_power_resources_init(void)
1072 {
1073 unused_power_resources_quirk =
1074 dmi_check_system(dmi_leave_unused_power_resources_on);
1075 }